CHEMISCHE BERICHTE

FORTSETZUNG DER BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT

HERAUSGEGEBEN VON DER GESELLSCHAFT DEUTSCHER CHEMIKER

119. JAHRGANG · HEFT 6 · SEITE 1755-2074

Dieses Heft wurde am 4. Juni 1986 ausgegeben.

Diazoverbindungen, 68¹⁾

Dibenzo[a,c]cyclooctene und Dibenzo[a,c]heptafulvene aus 5-(Diazomethyl)-5*H*-dibenzo[a,c]cycloheptenen

Stefan Arenz, Manfred Böhshar und Manfred Regitz*

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern

Eingegangen am 2. Dezember 1985

5,6-Dichlor-5*H*-dibenzo[*a,c*]cyclohepten (11) geht mit den Silber-(diazomethyl)phosphorylverbindungen 12a - d bzw. den Quecksilber-bis(diazomethylcarbonyl)verbindungen 12e - helektrophile Diazoalkansubstitution zu den 5-(Diazomethyl)-5*H*-dibenzo[*a,c*]cycloheptenen 14a - h ein. Kupfer(II)-acetylacetonat-katalysierte Zersetzung von 14a, c, e und g in Toluol führt über Ringerweiterung zu den Dibenzo[*a,c*]cyclooctenen 16a - d und 17a, b sowie unter 1,2-H-Shift zu den Dibenzo[*a,c*]heptafulvenen 18a - d.

Diazo Compounds, 681)

Dibenzo[a,c]cyclooctenes and Dibenzo[a,c]heptafulvenes from 5-(Diazomethyl)-5Hdibenzo[a,c]cycloheptenes

5,6-Dichloro-5*H*-dibenzo[*a,c*]cycloheptene (11) reacts with the silver (diazomethyl)phosphoryl compounds 12a - d and the mercury bis(diazomethylcarbonyl) compounds 12e - h, respectively, by electrophilic diazoalkane substitution to yield the 5-(diazomethyl)-5*H*-dibenzo[*a,c*]cycloheptenes 14a - h. The copper(II) acetylacetonate-catalyzed decomposition of 14a, c, e and g in toluene leads to the formation of both dibenzo[*a,c*]cyclooctenes 16a - d and 17a, b by ring enlargement and of dibenzo[*a,c*]heptafulvenes 18a - d by 1,2-H-shift.

Chem. Ber. 119, 1755-1765 (1986) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0606-1755 \$ 02.50/0 Aktuelle Fortschritte in der Synthese aliphatischer Diazoverbindungen beruhen hauptsächlich auf der konsequenten Entwicklung des Prinzips der elektrophilen Diazoalkansubstitution²⁾. So hat z. B. der Austausch des Diazomethylwasserstoffs von α -Diazocarbonyl- und α -Diazophosphorylverbindungen mit Hückel-aromatischen Kationen eine Reihe neuer, diazomethylsubstituierter, ungesättigter Carbocyclen zugänglich gemacht, wobei dem Tropyliumsystem besondere Aufmerksamkeit entgegengebracht wurde.

Außer der unsubstituierten Stammverbindung $(1 \rightarrow 2)^{39}$ wurden benzo- und dibenzokondensierte Tropyliumsysteme untersucht. Während das Benzotropyliumsystem (3, X = H) elektrophiles Verhalten sowohl in 5- als auch in 7-Position entfaltet (was die Bildung von 4 und entsprechenden 7-Isomeren zur Folge hat)⁴⁹, spielen sich elektrophile Diazoalkansubstitutionen mit 7-Brom- und 7-(Alkylthio)benzotropylium-Kationen spezifisch in der 5-Position unter der Bildung von 4 ab^{5,6}. Dies trifft auch für die 7-alkoxysubstituierten Benzotropylium-Systeme 5 zu, doch unterliegen entsprechende Diazoverbindungen noch der spontanen nachträglichen Isomerisierung zu 6 durch intramolekulare Cycloaddition⁷⁰. Anstelle von Tropyliumkationen selbst lassen sich auch potentielle Vorläufer für den Substitutionsprozeß an metallierten Diazoverbindungen heranziehen, wie die Reaktion $7 \rightarrow 8^{80}$ belegt. Schließlich sind auch 5-(Diazomethyl)-5H-dibenzo[a,d]cycloheptene durch elektrophile Diazoalkansubstitution (9 \rightarrow 10)⁹⁰ gut zugänglich.

Chem. Ber. 119 (1986)

Das Synthesepotential der neuen Diazoverbindungen gibt sich u.a. an neuen Zugängen für Benzocyclooctene (aus 4, $X = Br^{5}$ und 8^{8}), Benzooctavalene (aus 4, $X = H^{4}$), Benzosemibullvalene (aus 6^{7}), Dibenzosemibullvalene und Dibenzocyclooctene (aus 10^{9}) zu erkennen.

In der vorliegenden Arbeit setzen wir uns mit Substitutionsreaktionen an den metallierten Diazoverbindungen 12 durch das potentielle Elektrophil 11 auseinander und zeigen auch hier nützliche Folgereaktionen auf.

5-(Diazomethyl)-5H-dibenzo[a,c]cycloheptene 14a – h

Setzt man 5,6-Dichlor-5*H*-dibenzo[a,c]cyclohepten (11) in Dichlormethan bei 0°C mit den Silber-(diazomethyl)phosphorylverbindungen 12a-d bzw. den Quecksilber-bis(diazomethylcarbonyl)verbindungen 12e-h um, so erhält man nach chromatographischer Aufarbeitung die analysenreinen Diazoverbindungen 14a-h in Ausbeuten von 10-54%. Sie sind gelb und stellen bis auf 14a und b (Öle) kristallisierte, bei Raumtemperatur stabile Verbindungen dar (Ausnahme 14h, das nur bei -20°C lagerfähig ist).

Es ist durchaus denkbar, daß die Bildung von 14 unmittelbar aus 11 und 12 durch S_N 2-Reaktion erfolgt, doch geben wir einem zweistufigen Reaktionsablauf den Vorzug: Silber- bzw. Quecksilberchloridabspaltung zwischen beiden Reaktionspartnern ist für die Bildung des Ionenpaares 13 verantwortlich, dessen Bruchstücke spezifisch über die 5- bzw. 7-Position des Kations zu 14 kombinieren. Die Bindung des Diazomethylanions an den Chlor-Kohlenstoff ist aus thermodynamischen Gründen äußerst unwahrscheinlich, da dies zur Aufhebung der Aromatizität der beiden Benzolkerne führen würde. Unsere Vorstellung wird durch die intermediäre Orangefärbung aller Reaktionsansätze gestützt; sie stellt die Eigenfarbe des 6-Chlordibenzo[*a,c*]cycloheptenylium-Kations dar¹⁰ (s. auch Lit.⁸).

Elementare Zusammensetzung und spektroskopische Eigenschaften bestätigen die Konstitution der neuen Diazoverbindungen. In den IR-Spektren (KBr bzw. Film) treten u.a. Diazovalenzschwingungen, Absorptionen im C/C-Doppelbindungsbereich sowie in Abhängigkeit vom Diazorest PO- bzw. CO-Frequenzen auf (s. Tab. 1).

Chem. Ber. 119 (1986)

	·	Tab. 1. IR-	√-H₁ pun -	MR-Spek	ctren der	6-Chlor-5-(diazomet	hyl)-5H-dibenzo	[a,c]cycloheptene 14a-h
Nr.	$C = N_2$	C=0	R (KBr) [c C=C	0=d P=0	c-ci	5-H (³ J _{P,H} / ⁴ J _{5-H,7-H})	¹ H-NMR (CD 7-H (⁴ J _{7-H,5-H})	Cl ₃ , δ in ppm, J in Hz) weitere Signale
14a	2090 ^{a)}	I	1643	1205	750	4.79 (4.7/1.8)	6.77 (1.8)	6.9-7.7 (m, 18H, Aromaten-H)
14b	2070 ^{a)}	I	1625	1229	755	4.57 (m)	6.71 (1.5) ^{b)} 6.79 (1.5)	7.0-7.7 (m, 13H, Aromaten-H), 3.53, 3.61 (jeweils d, ${}^{3}I_{\rm FH} = 11.7$, OCH ₃)
14c	2083	Ι	1627	1249	755	4.53 (4.7/1.8)	6.90 (1.8)	7.1 – 7.7 (m, 8H, Aromaten-H), 3.44, 3.50 (jeweils d, ${}^{3}P_{\rm PH} = 12.0$, OCH ₃)
14d	2075	1	1630	1250	755	4.55 (4.7/°)	6.94 (°)	7.2 -7.7 (m, 8H, Aromaten-H), 3.83 (m, OCH ₂ CH ₃), 1.12, 1.25 (jeweils dt, ³ J _{H,H} = 7.0, ⁴ J _{P,H} = 0.6, OCH ₂ CH ₃)
14e	2062	1625	1612	I	755	5.08 (-/1.7)	6.84 (1.7)	6.9 - 7.8 (m, 13H, Aromaten-H)
14f	2069	1622	ŀ	1	750	4.88 (-/1.6)	6.74 (1.6)	7.1 – 7.7 (m, 8H, Aromaten-H), 0.83 [s, C(CH ₃) ₃]
14g	2090	1700	1640	ł	745	4.77 (–/1.5)	6.85 (1.5)	7.1 – 7.7 (m, 8H, Aromaten-H), 3.58 (s, OCH ₃)
14h	2078	1676	1629	I	750	4.72 (–/°)	6.84 (– ^{c)})	7.1 – 7.8 (m, 8H, Aromaten-H), 1.31 [s, OC(CH ₃) ₃]
^{a)} Film.	- ^{b)} Diaster	comerenger	misch im V	/erhältnis	1:1 •	Verbreitertes Signal	, Kopplung nich	t zu bestimmen.

Die ¹H-NMR-Spektren von 14a – h erlauben zunächst eine Aussage über die Position des Diazomethylrestes: Die Nichtäquivalenz der beiden Siebenring-Wasserstoffe legt C-5 (bzw. C-7) eindeutig als Reaktionszentrum fest. Der quartäre Wasserstoff (5-H) tritt bei $\delta = 4.53 - 5.08$, der olefinische Wasserstoff bei $\delta =$ 6.71 - 6.94 in Resonanz. Beide Absorptionen sind durch Fernkopplung mit 1.5 - 1.8 Hz aufgespalten (s. Tab. 1). Naturgemäß erfährt 5-H eine weitere Aufspaltung durch Phosphor im Falle von 14a - d; sie beträgt 4.7 Hz. In den ¹H-NMR-Spektren von 14c und d fällt auf, daß die Methoxy- und Ethoxygruppen zusätzlich zur Aufspaltung durch den Phosphor eine weitere Signalverdoppelung aufweisen (s. Tab. 1). Sie ist die Folge des Chiralitätszentrums an C-5, das die Phosphorylreste prochiral und die Alkoxyreste diastereotop, d.h. magnetisch unterscheidbar werden läßt¹¹. Schließlich kommt es im Falle von 14b zur Bildung diastereomerer Reaktionsprodukte, die sich ¹H-NMR-spektroskopisch zu erkennen geben (z. B. durch jeweils zwei Signale für 7-H oder Phosphinester-Methyl, s. Tab. 1), aber nicht getrennt werden konnten.

Dibenzo[a,c]cyclooctene 16a – d und 17a, b sowie Dibenzo[a,c]heptafulvene 18a – d

Unsere Thermolyseversuche beschränken sich auf die Diazoverbindungen 14a, c, e und g, die in Toluol bei 90°C in Gegenwart katalytischer Mengen von Kupfer(II)-acetylacetonat zersetzt werden¹²⁾. Die chromatographische Produktauftrennung liefert zunächst die 5-R-substituierten Dibenzocyclooctene 16a-d (25-48%), die in jedem Fall die Hauptprodukte der Reaktion darstellen. Sie leiten sich von den Carbenen 15a-d (bzw. entsprechenden Carbenoiden) durch 1,2-Aryl-Shift ab. Daneben werden durchgängig Dibenzoheptafulvene (18a-d, 10-18%) gebildet, die aus den gleichen Vorstufen durch 1,2-H-Shift hervorgehen.

Nur im Falle der phosphorylierten Diazoverbindungen 14a und c werden in geringen Ausbeuten (6 bzw. 8%) noch die 6-R-substituierten Dibenzocyclooctene 17a und b isoliert. In diesen Fällen wandert der Vinylkohlenstoff. Hinweise auf eine zu Dibenzooctavalenen führende intramolekulare Cyclopropanierung (18 \rightarrow 19) gibt es nicht.

Die Dibenzo[a,c]cyclooctene 16 und 17 stellen farblose, bei Raumtemperatur stabile Verbindungen dar. Entsprechendes gilt auch für die von *E. Vogel* und Mitarbeitern¹³⁾ erstmals hergestellte unsubstituierte Stammverbindung (16 bzw. 17, R = H sowie H statt Cl). Die Dibenzo[a,c]heptafulvene 18 dagegen sind blaßgelb bis gelb und unter vergleichbaren Bedingungen nur begrenzte Zeit haltbar. Ihre Farbe kann durchaus auch als Konstitutionsargument gewertet werden. Heptafulven selbst ist ein rotes Öl¹⁴, Benzoheptafulven eine gelbe Verbindung¹⁵. Unseres Wissens sind Fulvene des Typs 18 bisher nicht bekannt.

Aus den IR-Spektren der Dibenzocyclooctene 16a - d und 17a, b (s. Tab. 2) lassen sich keine schlüssigen Konstitutionsargumente ableiten; hier helfen die ¹H-NMR-Spektren weiter. Zunächst findet man für beide Verbindungsreihen die Resonanz von 8-H im engen Bereich von $\delta = 6.53 - 6.88$. Die Feinaufspaltung im Falle von 16b und d (0.5 bzw. 0.4 Hz) ist der ⁴J-Kopplung mit 6-H zuzuschreiben. Die Isomeren 17a und b weisen im Einklang mit ihrer Konstitution keine Wasserstoffkopplungen auf. Im Falle von 17b wird die Aufspaltung von 8-H (2.1 Hz) durch den Phosphor verursacht, was sich mit Hilfe der Breitband-Phosphorent-kopplung überzeugend belegen läßt.

Der zweite Gerüstwasserstoff von 16a-d (6-H) absorbiert im Bereich von $\delta = 6.61 - 7.13$; bei 16a und b ist er durch strukturtypische $cis^{-3}J_{P,H}$ -Kopplungen¹⁶ (s. Tab. 2) zu Dubletts aufgespalten. Auf die ⁴J-Kopplung mit 8-H, die nur für Isomere des Typs 16 denkbar ist, wurde schon zuvor hingewiesen. In 17a kann der zweite Gerüstwasserstoff (5-H) wegen Überlagerung durch Aromatenwasserstoffe nicht lokalisiert werden; wohl aber in 17b; er zeigt ebenfalls eine markante $cis^{-3}J_{P,H}$ -Kopplung (s. Tab. 2).

Interessanterweise findet man für die Phosphonester-Methylgruppen sowohl von **16b** als auch von **17b** zwei Dubletts mit der üblichen Phosphorkopplung (s. Tab. 2). Vermutlich kommt das Phänomen, dem wir nicht nachgegangen sind, durch Rotationsbehinderung der Phosphorylreste am wannenförmigen Dibenzocyclooctenring¹⁷⁾ zustande. Für 5-(Dimethoxyphosphoryl)dibenzo[a,e]cycloocten ist analoges Verhalten bekannt und durch temperaturabhängige ¹H-NMR-Spektroskopie auch abgeklärt⁹.

Nur wenig Information liefert das beispielhaft für 16b gemessene ¹³C-NMR-Spektrum, da die olefinischen Kohlenstoffe C-5, -7 und -8 im Aromatenbereich liegen. Lediglich das Achtliniensignal von C-6 ist separierbar ($\delta = 142.0$) und weist die erwarteten Kopplungen auf (${}^{1}J_{H,C} = 168.2$ Hz, ${}^{2}J_{P,C} = 11.5$ Hz, ${}^{3}J_{H,C} = 7.6$ Hz).

Auch die Konstitution der Dibenzo[a,c]heptafulvene 18a-d leitet sich hauptsächlich aus deren ¹H-NMR-Daten ab, während den IR-Daten (s. Tab. 3) kaum diagnostischer Wert zukommt. Vorab sei festgehalten, daß die Möglichkeit zur E/Z-Isomerenbildung an der exocyclischen Doppelbindung nicht wahrgenommen

!			Tab. 2.	IR- und	I 'H-NMR-Spel	ktren der 7-Chlor	dibenzo[a,c]cyclooc	tene 16a-d und	17a, b	I
Nr.	C=0	IR (KBr) C=C	$\mathbf{P} = \mathbf{O}$	C-CI	5-H(³ J _{5-H,P})	¹ H-NMR 6-H(³ J _{6-H,P}) (⁴ J _{6-H,B-H})	$(CDCI_{3}, \delta \text{ in ppm}, .$ $8-H({}^{4}{}_{8,H,6,H})$ $({}^{4}{}_{3,H,P})$	/ in Hz) Aromaten-H	weitcre Signale	
16a	I	1627 1583	1189	750	1	6.97 (20.9/-)	6.85 (-/-)	6.7-7.5 (m)	I	
16b	I	1635 1605	1245	758	I	6.61 (18.2/0.5)	6.80 (0.5/)	7.1–7.5 (m)	3.38, 3.67 (jeweils d, ${}^{3}J_{\rm P,H} = 11.0$ Hz, OCH ₃)	
16c	1660	1590 1575	I	756	I	6.93 (-/-)	6.53 (-/-)	7.2-7.6 (m)	l	
16d	1710	1639 1615	I	750	I	7.13 (-/0.4)	6.88 (0.4/)	7.1 – 7.4 (m)	3.72 (s, OCH ₃)	
17a	1	1680 1605	1190	750	(B	I	6.75 (-/-)	7.1 – 7.8 (m)	I	
17b	I	1640 1605	1265	750	6.14 (14.3)	1	6.87 (-/2.1)	7.2 <i>-</i> 7.7 (m)	${}^{3.27}$, ${}^{3.47}$ (jeweils d, ${}^{3}J_{\rm P,H} = 11.1$ Hz, OCH ₃)	
") Überl	agert di	urch Aron	naten-H.							
			Τ	ab. 3. IR	- nnd ¹ H-NMR	-Spektren der 6-	Chlordibenzo[<i>a,c</i>]he	ptafulvene 18a-	P	
Nr.	C=C	IR (KB) C=C	P = (P = (P	с С	CI 7-H (Aı	ufspaltung)	¹ H-NMR (CDCl ₃ 12-H (Aufspaltun	, õin ppm, <i>J</i> in g) Aroma	Hz) en-H weitere Signale	
18a	1	1640 1625	120	15 76	0 6.32 (s)		$4.65 (d, {}^2 J_{12.H,P} = 1)$	3.0) 7.1–7.	3 (m) –	
18b	I	1611	124	15 75	6 6.31 (d, ⁵ <i>J</i>	_{7-Н,Р} = 1.6)	4.90 (d, ${}^{2}J_{12-H,P} = 1$	1.9) 6.7–7.	7 (m) 3.57, 3.61 (jeweils ${}^{3}J_{PH} = 10.5$, OCF	ਰ ਜਿ
18c	1655	1591 1575	•	75.	5 6.45 (d, ⁵ <i>J</i>	_{7-Н,12-Н} = 2.1)	4.66 (d, ⁵ J _{12-H,7-H} =	2.1) 7.0–7.	/ (m) – (m)	5
18d	1735	1605	1	74	5 6.39 (d, ⁵ J	$_{7-H,12-H} = 0.5$	4.49 (dd, ${}^{5}J_{12-H,7-H} =$	0.5, 6.5-7.	7 (m) 3.50 (s, OCH ₃)	

 $\begin{array}{rll} \mathbf{4.49} \ (\mathrm{dd}, \ ^5 J_{12,\mathrm{H},\mathrm{PH}} = 0.5, & \mathbf{6.5} - 7.7 \ (\mathrm{m}) & \mathbf{3.50} \ (\mathrm{s}, \ \mathrm{OCH}_3) \\ & \mathbf{^5} J_{12,\mathrm{H},\mathrm{POMe}} = 0.9 \end{array}$

6.39 (d, ${}^{5}J_{7-H,12-H} = 0.5$)

116

wird. Isoliert wurde jeweils nur ein Isomeres, dessen Konfiguration offenbleiben muß. Im Falle von 18b spricht aber die offenbar durch Rotationsbehinderung verursachte Linienverdoppelung der Phosphonester-Methylgruppen (s. Tab. 3) für eine Anordnung, in der Benzolkern und 12-Phosphorylrest unmittelbar benachbart sind.

Der 7-Wasserstoff von 18a-d absorbiert bei $\delta = 6.31-6.45$; bei 18b ist er durch Phosphor der 12-Position zum Dublett aufgespalten. Auch hier ist der heteronukleare Charakter der Aufspaltung durch Breitband-Phosphorentkopplung sichergestellt. Bei 18c und d übt der 12-Wasserstoff einen analogen Einfluß auf 7-H aus (s. Tab. 3). Günstige sterische Anordnung der koppelnden Kerne ermöglicht diese Wechselwirkung¹⁸. Typisch für das Methylen-Inkrement von 18a-d ist die Hochfeldlage von 12-H ($\delta = 4.49-4.90$) sowie die große geminale P-Kopplung bei 18a und b (s. Tab. 3).

Auch im ¹³C-NMR-Spektrum läßt sich die *exo*-Methylengruppe eindeutig identifizieren. Der 12-Kohlenstoff von **18b** absorbiert bei $\delta = 123.8$ und ist durch Wasserstoff und Phosphor zu einem Vierlinien-Signal aufgespalten. Die Größe dieser Kopplungen (¹J_{H,C} = 158.7 Hz, ¹J_{P,C} = 192.1 Hz) läßt keinen Zweifel darüber aufkommen, daß beide Kerne unmittelbar an den Kohlenstoff gebunden sind.

Der Deutschen Forschungsgemeinschaft sowie dem Fonds der Chemischen Industrie schulden wir Dank für finanzielle Unterstützung. – Frau M. Alester danken wir für die Ausführung der Elementaranalysen.

Experimenteller Teil

Schmelzpunkte (unkorrigiert): Mettler FP 61 (Aufheizrate 2°C/min). – Elementaranalysen: Perkin-Elmer Analyser 240. – IR-Spektren: Perkin-Elmer 397, Beckman IR-20 A. – ¹H-NMR-Spektren: Varian EM 360, Varian EM 390, Bruker WP 200 (Tetramethylsilan als innerer Standard). – ¹³C-NMR-Spektren: Bruker WP 200 (Tetramethylsilan als innerer Standard). – Säulenchromatographie: Kieselgel Macherey & Nagel, 0.06–0.2 mm; die Trennungen wurden auf DC-Fertigplatten Macherey & Nagel, Polygram Sil G/UV₂₅₄ mit den für die Säulenchromatographie verwendeten Fließmitteln verfolgt. – Alle Lösungsmittel waren wasserfrei und destilliert.

Ausgangsverbindungen: 5,6-Dichlor-5*H*-dibenzo[a,c]cyclohepten (11)^{19,20}. Diazoverbindungen: 12 a^{21} , 12 b^{22} , 12 c^{23} , 12 d^{21} , 12 f^{25} , 12 f^{25} , 12 f^{27} .

Allgemeine Vorschrift zur Umsetzung von 5,6-Dichlor-5H-dibenzo[a,c]cyclohepten (11) mit den Silber-(diazomethyl)phosphorylverbindungen 12a-d: Zu der Lösung von 5.0 mmol 12a-d in 30 ml Dichlormethan tropft man unter Rühren bei 0°C innerhalb von 10–15 min die Lösung von 1.31 g (5.0 mmol) 11 in 20 ml Dichlormethan und rührt weitere 10 min bei Raumtemp. Man filtriert, dampft bei 30°C/15 Torr ein und chromatographiert den Rückstand an 200 g Kieselgel (Säule 120×2 cm) mit ca. 600 ml Essigsäure-ethylester, wobei die Diazoverbindungen 14a-d als analysenreine Öle verbleiben, die im Falle von 14c und d beim Anreiben mit Ether kristallisieren. IR- und ¹H-NMR-Daten s. Tab. 1; Ausbeuten, Schmelzpunkte und analytische Daten s. Tab. 4.

Allgemeine Vorschrift zur Umsetzung von 5,6-Dichlor-5H-dibenzo[a,c]cyclohepten (11) mit den Quecksilber-bis(diazomethylcarbonyl)verbindungen 12e-h: Zu der Lösung von

Chem. Ber. 119 (1986)

Tab. 4. Analytische Daten der 6-Ch	ılor-5-(diazomethyl)-5H	-dibenzo[a,c]cycloheptene	14a — h
Diazoverbindung	% Ausb. (Schmp. °C)	Summenformel (Molmasse)	C H N
[(6-Chlor-5 <i>H</i> -dibenzo[<i>a,c</i>]cyclohepten-5-yl)diazo-	38	C ₂₈ H ₂₀ ClN ₂ OP	Ber. 70.94 4.61 5.62
methyl]diphenylphosphanoxid (14 a)	(^{a)})	(466.9)	Gef. 70.9 4.55 5.5
[(6-Chlor-5H-dibenzo[a.c]cyclohepten-5-yl)diazo-	16	C ₂₃ H ₁₈ CIN ₂ O ₂ P	Ber. 65.64 4.31 6.66
methyl]phenylphosphinsäure-methylester (14b)	(^a)	(420.8)	Gef. 65.7 4.28 6.5
[(6-Chlor-5H-dibenzo[a,c]cyclohepten-5-yl)diazo-	30	C ₁₈ H ₁₆ CIN ₂ O ₃ P	Ber. 57.69 4.30 7.47
methyl]phosphonsäure-dimethylester (14c)	(117)	(374.8)	Gef. 57.6 4.39 7.5
[(6-Chlor-5H-dibenzo[a,c]cyclohepten-5-yl)diazo-	21	C ₂₀ H ₂₀ CIN ₂ O ₃ P	Ber. 59.64 5.00 6.95
methyl]phosphonsäure-diethylester (14d)	(65, Zers.)	(402.8)	Gef. 59.5 5.07 7.0
[(6-Chlor-5H-dibenzo[a,c]cyclohepten-5-yl)diazo-	54	C ₂₃ H ₁₅ CIN ₂ O	Ber. 74.79 4.08 7.55
methyl]-phenyl-keton (14e)	(130)	(370.8)	Gef. 74.3 4.15 7.7
(tert-Butyl)-[(6-chlor-5H-dibenzo[a,c]cyclohepten-	41	C ₂₁ H ₁₉ CIN ₂ O	Ber. 71.89 5.46 7.98
5-yl)diazomethyl]-keton [14f]	(126)	(350.8)	Gef. 71.8 5.32 8.0
(6-Chlor-5H-dibenzo[a,c]cyclohepten-5-yl)diazo-	54 .	C ₁₈ H ₁₃ CIN ₂ O ₂	Ber. 66.57 4.03 8.63
essigsäure-methylester (14g)	(125)	(324.8)	Gef. 66.4 4.10 8.8
(6-Chlor-5 <i>H</i> -dibenzo[<i>a,c</i>]cyclohepten-5-yl)diazo-	10	C ₂₁ H ₁₉ CIN ₂ O ₂	Ber. 68.76 5.22 7.64
essigsäure- <i>tert</i> -butylester (14h)	(113, Zers.)	(366.8)	Gef. 68.7 5.34 7.8

^{a)} Nicht kristallisierende, hochviskose Öle.

2.5 mmol 12e-h in 30 ml Dichlormethan tropft man unter Rühren bei 0°C innerhalb von 15 min die Lösung von 1.31 g (5.0 mmol) 11 in 25 ml Dichlormethan. Nach weiteren 10 min schüttelt man mit 40 ml gesättigter, wäßriger Natriumsulfidlösung aus und trocknet die organische Phase über Natriumsulfat. Eindampfen bei 30°C/15 Torr, Chromatographie des Rückstandes an 100 g Kieselgel (Säule 110 × 2 cm) mit ca. 500 ml Dichlormethan liefert die Diazoverbindungen 14e-h als Öle, die in wenig Ether bei -20°C (ggf. Anreiben) kristallisieren. IR- und ¹H-NMR-Daten s. Tab. 1; Ausbeuten, Schmelzpunkte und analytische Daten s. Tab. 4.

7-Chlordibenzo[<i>a,c</i>]cycloocten- (16, 17)	Schmp. [°C]	Summenformel		Anal	lyse
6-Chlordibenzo[<i>a,c</i>]heptafulven- (18)	(Farbe)	(Molmasse)		C	H
-5-yl)diphenylphosphanoxid	196	C ₂₈ H ₂₀ ClOP	Ber.	76.63	4.59
(16a)	(farblos)	(438.9)	Gef.	76.3	4.68
-5-yl)phosphonsäure-dimethylester (16b)	146	C ₁₈ H ₁₆ ClO ₃ P	Ber.	62.35	4.65
	(farblos)	(346.7)	Gef.	62.3	4.70
-5-yl)-phenyl-keton	112	C ₂₃ H ₁₅ ClO	Ber.	80.58	4.41
(16c)	(farblos)	(342.8)	Gef.	80.6	4.47
-5-carbonsäure-methylester	131	C ₁₈ H ₁₃ ClO ₂	Ber.	7 2.85	4.42
(16d)	(farblos)	(296.8)	Gef.	72.6	4.51
-6-yl)diphenylphosphanoxid	225 (Zers.)	C ₂₈ H ₂₀ ClOP	Ber.	76.63	4.59
(17a)	(farblos)	(438.9)	Gef.	76.6	4.67
-6-yl)phosphonsäure-dimethylester	153	C ₁₈ H ₁₆ ClO ₃ P	Ber.	62.35	4.65
(17b)	(farblos)	(346.7)	Gef.	62.3	4.70
-12-yl)diphenylphosphanoxid	210 (Zers.)	C ₂₈ H ₂₀ ClOP	Ber.	76.63	4.59
(18a)	(gelb)	(438.9)	Gef.	76.7	4.67
-12-yl)phosphonsäure-dimethylester	157	C ₁₈ H ₁₆ ClO ₃ P	Ber.	62.35	4.65
(18b)	(gelb)	(346.7)	Gef.	62.3	4.72
-12-yl)-phenyl-keton	196	C ₂₃ H ₁₅ ClO	Ber.	80.58	4.41
(18c)	(blaßgelb)	(342.8)	Gef.	80.5	4.49
-12-carbonsäure-methylester	173	C ₁₈ H ₁₃ ClO ₂	Ber.	72.85	4.42
(18d)	(blaßgelb)	(296.8)	Gef.	72.7	4.51

Tab. 5. Analytische Daten der 7-Chlordibenzo[a,c]cyclooctene 16a-d und 17a, b sowie der 6-Chlordibenzo[a,c]heptafulvene 18a-d

Allgemeine Vorschrift für die Herstellung der Dibenzo[a,c]cyclooctene 16a-d und 17a, b sowie der Dibenzo[a,c]heptafulvene 18a-d durch Thermolyse der 5-(Diazomethyl)-5H-dibenzo[a,c]cycloheptene 14a, c, e und g: Zu der Lösung von 3 mmol 14a, c, e und g in 30 ml Toluol gibt man 40 mg (0.15 mmol) Kupfer(II)-acetylacetonat und erhitzt unter Rühren im auf ca. 90 °C vorgeheizten Ölbad solange, bis dünnschichtchromatographisch keine Diazoverbindung mehr nachweisbar ist (20-40 min). Nach Abkühlen wird bei 50 °C/15 Torr weitestgehend eingeengt und wie folgt aufgearbeitet:

a) Im Falle von 14a und c wird das Rohprodukt durch Chromatographie an 200 g Kieselgel (Säule 120×2 cm) mit 1100 ml Essigsäure-ethylester aufgetrennt, wobei man nacheinander die Isomeren 16a, b, 17a, b und 18a, b als Öle erhält, die aus wenig Ether bei -20 °C (ggf. Anreiben) kristallisieren.

b) Im Falle von 14e wird das Rohprodukt durch präparative Schichtchromatographie an 60 g Kieselgel mit Fluoreszenzindikator (Platten 40×20 cm, Schichtdicke 2 mm) mit Dichlormethan aufgetrennt, wobei man 16c und 18c als Öle erhält, die aus wenig Ether bei -20°C (ggf. Anreiben) kristallisieren.

c) Im Falle von 14g erfolgt die Produkttrennung (16d und 18d) mit 800 ml Dichlormethan wie für 14a und c unter a) beschrieben. IR- und ¹H-NMR-Daten s. Tab. 2 und 3; Schmelzpunkte und analytische Daten s. Tab. 5.

CAS-Registry-Nummern

11: 100083-00-9 / 12a: 70550-76-4 / 12b: 57511-99-6 / 12c: 70550-75-3 / 12d: 100083-01-0 / 12e: 93462-67-0 / 12f: 93462-68-1 / 12g: 83757-88-4 / 12h: 93462-66-9 / 14a: 100082-93-7 / 14b: 100082-94-8 / 14c: 100082-95-9 / 14d: 100082-96-0 / 14e: 100082-97-1 / 14f: 100082-98-2 / 14g: 100082-99-3 / 14h: 100102-36-1 / 16a: 100083-02-1 / 16b: 100083-04-3 / 16c: 100083-05-5 / 16d: 100083-09-8 / 17a: 100083-03-2 / 17b: 100102-38-3 / 18a: 100102-37-2 / 18b: 100082-05-4 / 11a- 100082-07-0 / 12b: 100082-07-3 / 18a: 100083-07-2 / 17b: 100102-38-3 / 18a: 100102-37-2 / 17b: 100102-38-3 / 18a: 100102-38-3 / 18a: 100083-07-2 / 17b: 100102-38-3 / 18a: 100102-38-3 / 18a: 100083-07-2 / 17b: 100102-38-3 / 18a: 100102-38-3 / 18a: 100083-07-2 / 17b: 100102-38-3 / 18a: 100102-38-3 / 18a: 100083-07-2 / 17b: 100102-38-3 / 18a: 100102-38-3 / 18a: 100083-07-2 / 17b: 100102-38-3 / 18a: 100102-38-3 / 18a: 100083-07-2 / 17b: 100083-07-2 / 17b: 100102-38-3 / 18a: 100083-07-2 / 17b: 100083-07-2 / 17 100102-37-2 / 18b: 100083-05-4 / 18c: 100083-07-6 / 18d: 100083-08-7

- ²⁾ Zusammenfassung: J. Fink und M. Regitz, Synthesis 1985, 569.
- ³⁾ M. Regitz, A. Heydt und B. Weber, Angew. Chem. 91, 566 (1979); Angew. Chem., Int. Ed. Engl. 18, 531 (1979). W. Bethäuser, B. Weber, H. Heydt, und M. Regitz, Chem. Ber. 118, 1315 (1985).
- ⁴⁾ M. Böhshar, Dissertation, Univ. Kaiserslautern 1985.
- ⁵⁾ M. Böhshar, H. Heydt und M. Regitz, Chem. Ber. 117, 3093 (1984).
- M. Böhshar, G. Maas, H. Heydt und M. Regitz, Tetrahedron 41, 825 (1985).
 M. Böhshar, H. Heydt, G. Maas, H. Gümbel und M. Regitz, Angew. Chem. 97, 571 (1985); Angew. Chem., Int. Ed. Engl. 24, 597 (1985).
- ⁸⁾ M. Böhshar, G. Maas, H. Heydt und M. Regitz, Tetrahedron 40, 5171 (1984).
- 9) M. Böhshar, H. Heydt und M. Regitz, Tetrahedron 42 (1986), im Druck.
- ¹⁰⁾ E. Heilbronner, G. Naville und H. Strauss, Helv. Chim. Acta 43, 1221 (1960).
- ¹¹⁾ H. Günther, NMR-Spektroskopie, 2. Aufl., S. 192, Thieme, Stuttgart 1983.
- ¹²⁾ Übersicht zur Metall-katalysierten Zersetzung aliphatischer Diazoverbindungen: G. Maas, Top. Curr. Chem. 1986 (im Druck).
- ¹³⁾ E. Vogel, W. Frass und J. Wolpert, Angew. Chem. 75, 979 (1963); Angew. Chem., Int. Ed. Engl. 2, 625 (1963).
- ¹⁴⁾ W. v. E. Doering und D. W. Wiley, Tetrahedron 11, 183 (1960).
- ¹⁵⁾ D. J. Bertelly und C. C. Ong, J. Am. Chem. Soc. 87, 3719 (1965).
- ¹⁶⁾ T. Clerc und E. Pretsch, Kernresonanzspektroskopie, Teil I, 2. Aufl., S. 113, Akademische Verlagsanstalt, Frankfurt/Main 1973.
- ¹⁷⁾ H. Irngartinger und W. R. K. Reibel, Acta Cryst. B 37, 1724 (1981).
- ¹⁸⁾ S. Sternhell, Rev. Pure Appl. Chem. 14, 15 (1964).
- ¹⁹⁾ G. Joshi, N. Singh und L. Pande, Synthesis 1972, 317.
- ²⁰⁾ T. Coburn und W. Jones, J. Am. Chem. Soc. 96, 5218 (1974).
- ²¹⁾ M. Regitz, A. Liedhegener, U. Eckstein, M. Martin und W. Anschütz, Liebigs Ann. Chem. 748, 207 (1971).
- ²²⁾ U. Felcht und M. Regitz, Chem. Ber. 108, 2040 (1975).
- ²³⁾ D. Seyferth, R. S. Marmor und P. Hilpert, J. Org. Chem. 36, 1379 (1971).
- ²⁴ P. Yates, F. X. Garneau und J. P. Lokensgard, Tetrahedron 31, 1979 (1975).
 ²⁵ P. Yates und F. X. Garneau, Tetrahedron Lett. 1967, 71.
- ²⁶⁾ E. Buchner, Ber. Dtsch. Chem. Ges. 28, 215 (1895).
- ²⁷⁾ P. Eisenbarth und M. Regitz, Chem. Ber. 115, 3796 (1982).

[274/85]

¹⁾ 67. Mitteil.: M. Reaitz, G. Weise, B. Lenz, U. Förster und G. Maas, Bull. Soc. Chim. Belg. 94, 499 (1985).